(matchstatelist-indices-lte n x) → lte
Function:
(defun matchstatelist-indices-lte (n x) (declare (xargs :guard (and (natp n) (matchstatelist-p x)))) (let ((__function__ 'matchstatelist-indices-lte)) (declare (ignorable __function__)) (if (atom x) t (and (<= (matchstate->index (car x)) (lnfix n)) (matchstatelist-indices-lte n (cdr x))))))
Theorem:
(defthm matchstatelist-indices-lte-implies-car (b* ((?lte (matchstatelist-indices-lte n x))) (implies (and lte (consp x)) (<= (matchstate->index (car x)) (nfix n)))) :rule-classes :linear)
Theorem:
(defthm matchstatelist-indices-lte-implies-cdr (b* ((?lte (matchstatelist-indices-lte n x))) (implies lte (matchstatelist-indices-lte n (cdr x)))))
Theorem:
(defthm matchstatelist-indices-lte-of-append (iff (matchstatelist-indices-lte n (append x y)) (and (matchstatelist-indices-lte n x) (matchstatelist-indices-lte n y))))
Theorem:
(defthm matchstatelist-indices-lte-of-rev (iff (matchstatelist-indices-lte n (rev x)) (matchstatelist-indices-lte n x)))
Theorem:
(defthm matchstatelist-indices-lte-of-nil (matchstatelist-indices-lte n nil))
Theorem:
(defthm matchstatelist-indices-lte-of-remove (implies (matchstatelist-indices-lte n x) (matchstatelist-indices-lte n (remove k x))))
Theorem:
(defthm matchstatelist-indices-lte-of-undup (implies (matchstatelist-indices-lte n x) (matchstatelist-indices-lte n (undup x))))
Theorem:
(defthm matchstatelist-indices-lte-of-set-difference (implies (matchstatelist-indices-lte n x) (matchstatelist-indices-lte n (set-difference$ x y))))
Theorem:
(defthm matchstatelist-indices-lte-of-nfix-n (equal (matchstatelist-indices-lte (nfix n) x) (matchstatelist-indices-lte n x)))
Theorem:
(defthm matchstatelist-indices-lte-nat-equiv-congruence-on-n (implies (acl2::nat-equiv n n-equiv) (equal (matchstatelist-indices-lte n x) (matchstatelist-indices-lte n-equiv x))) :rule-classes :congruence)
Theorem:
(defthm matchstatelist-indices-lte-of-matchstatelist-fix-x (equal (matchstatelist-indices-lte n (matchstatelist-fix x)) (matchstatelist-indices-lte n x)))
Theorem:
(defthm matchstatelist-indices-lte-matchstatelist-equiv-congruence-on-x (implies (matchstatelist-equiv x x-equiv) (equal (matchstatelist-indices-lte n x) (matchstatelist-indices-lte n x-equiv))) :rule-classes :congruence)