• Top
    • Documentation
    • Books
    • Boolean-reasoning
      • Ipasir
      • Aignet
        • Base-api
        • Aignet-construction
        • Representation
        • Aignet-copy-init
        • Aignet-simplify-with-tracking
        • Aignet-simplify-marked-with-tracking
        • Aignet-cnf
        • Aignet-simplify-marked
        • Aignet-complete-copy
        • Aignet-transforms
          • Aignet-output-ranges
          • Aignet-comb-transforms
            • Fraig
            • Parametrize
            • Observability-fix
              • Observability-fix-hyps/concls
              • Observability-fix-input-copies
              • Observability-fixed-inputs
              • Observability-fixed-regs
              • Observability-fix-hyp/concl
                • Observability-fix-lit
                • M-assum-n-output-observability
                • Observability-fix-outs
                • Observability-fix-nxsts
                • Observability-split-supergate-aux
                • Observability-fix-core
                • Observability-split-supergate
                • Aignet-build-wide-and
                • Observability-config
                • Observability-fix!
                • Observability-size-check
                • M-assum-n-output-observability-config
              • Constprop
              • Apply-m-assumption-n-output-output-transform-default
              • Balance
              • Apply-n-output-comb-transform-default
              • Apply-comb-transform-default
              • Obs-constprop
              • Rewrite
              • Comb-transform
              • Abc-comb-simplify
              • Prune
              • Rewrite!
              • M-assumption-n-output-comb-transform->name
              • N-output-comb-transform->name
              • Comb-transform->name
              • N-output-comb-transformlist
              • M-assumption-n-output-comb-transformlist
              • Comb-transformlist
              • Apply-comb-transform
            • Aignet-m-assumption-n-output-transforms
            • Aignet-n-output-comb-transforms
          • Aignet-eval
          • Semantics
          • Aignet-read-aiger
          • Aignet-write-aiger
          • Aignet-abc-interface
          • Utilities
        • Aig
        • Satlink
        • Truth
        • Ubdds
        • Bdd
        • Faig
        • Bed
        • 4v
      • Projects
      • Debugging
      • Std
      • Community
      • Proof-automation
      • ACL2
      • Macro-libraries
      • Interfacing-tools
      • Hardware-verification
      • Software-verification
      • Math
      • Testing-utilities
    • Observability-fix

    Observability-fix-hyp/concl

    Signature
    (observability-fix-hyp/concl hyp concl aignet 
                                 copy gatesimp strash aignet2 state) 
     
      → 
    (mv conj new-copy new-strash new-aignet2 new-state)
    Arguments
    hyp — Guard (litp hyp).
    concl — Guard (litp concl).
    gatesimp — Guard (gatesimp-p gatesimp).
    Returns
    conj — Type (litp conj).

    Definitions and Theorems

    Function: observability-fix-hyp/concl

    (defun observability-fix-hyp/concl
           (hyp concl aignet
                copy gatesimp strash aignet2 state)
     (declare (xargs :stobjs (aignet copy strash aignet2 state)))
     (declare (xargs :guard (and (litp hyp)
                                 (litp concl)
                                 (gatesimp-p gatesimp))))
     (declare (xargs :guard (and (<= (num-fanins aignet)
                                     (lits-length copy))
                                 (aignet-copies-in-bounds copy aignet2)
                                 (fanin-litp hyp aignet)
                                 (fanin-litp concl aignet)
                                 (<= (num-ins aignet) (num-ins aignet2))
                                 (<= (num-regs aignet)
                                     (num-regs aignet2)))))
     (let ((__function__ 'observability-fix-hyp/concl))
       (declare (ignorable __function__))
       (b* (((mv new-hyp ?hyp-copies
                 new-concls copy strash aignet2 state)
             (observability-fix-hyps/concls
                  (list hyp)
                  (list concl)
                  aignet
                  copy gatesimp strash aignet2 state))
            ((mv conj strash aignet2)
             (aignet-hash-and new-hyp (car new-concls)
                              gatesimp strash aignet2)))
         (mv conj copy strash aignet2 state))))

    Theorem: litp-of-observability-fix-hyp/concl.conj

    (defthm litp-of-observability-fix-hyp/concl.conj
      (b* (((mv ?conj ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyp/concl
                 hyp concl aignet
                 copy gatesimp strash aignet2 state)))
        (litp conj))
      :rule-classes :rewrite)

    Theorem: aignet-extension-of-observability-fix-hyp/concl

    (defthm aignet-extension-of-observability-fix-hyp/concl
      (b* (((mv ?conj ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyp/concl
                 hyp concl aignet
                 copy gatesimp strash aignet2 state)))
        (aignet-extension-p new-aignet2 aignet2)))

    Theorem: stype-counts-of-observability-fix-hyp/concl

    (defthm stype-counts-of-observability-fix-hyp/concl
      (b* (((mv ?conj ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyp/concl
                 hyp concl aignet
                 copy gatesimp strash aignet2 state)))
        (implies (and (not (equal (stype-fix stype) (and-stype)))
                      (not (equal (stype-fix stype) (xor-stype))))
                 (equal (stype-count stype new-aignet2)
                        (stype-count stype aignet2)))))

    Theorem: copy-length-of-observability-fix-hyp/concl

    (defthm copy-length-of-observability-fix-hyp/concl
      (b* (((mv ?conj ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyp/concl
                 hyp concl aignet
                 copy gatesimp strash aignet2 state)))
        (implies (and (<= (num-fanins aignet) (len copy))
                      (aignet-litp hyp aignet)
                      (aignet-litp concl aignet))
                 (equal (len new-copy) (len copy)))))

    Theorem: copies-in-bounds-of-observability-fix-hyp/concl

    (defthm copies-in-bounds-of-observability-fix-hyp/concl
      (b* (((mv ?conj ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyp/concl
                 hyp concl aignet
                 copy gatesimp strash aignet2 state)))
        (implies (and (aignet-copies-in-bounds copy aignet2)
                      (aignet-litp hyp aignet)
                      (aignet-litp concl aignet)
                      (<= (num-ins aignet) (num-ins aignet2))
                      (<= (num-regs aignet)
                          (num-regs aignet2)))
                 (and (aignet-copies-in-bounds new-copy new-aignet2)
                      (aignet-litp conj new-aignet2)))))

    Theorem: eval-of-observability-fix-hyp/concl

    (defthm eval-of-observability-fix-hyp/concl
     (b* (((mv ?conj ?new-copy
               ?new-strash ?new-aignet2 ?new-state)
           (observability-fix-hyp/concl
                hyp concl aignet
                copy gatesimp strash aignet2 state)))
      (implies
       (and (aignet-copies-in-bounds copy aignet2)
            (aignet-litp hyp aignet)
            (aignet-litp concl aignet)
            (<= (num-ins aignet) (num-ins aignet2))
            (<= (num-regs aignet)
                (num-regs aignet2)))
       (equal
        (lit-eval conj invals regvals new-aignet2)
        (b-and
           (lit-eval
                hyp
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet)
           (lit-eval
                concl
                (input-copy-values 0 invals regvals aignet copy aignet2)
                (reg-copy-values 0 invals regvals aignet copy aignet2)
                aignet))))))

    Theorem: w-state-of-observability-fix-hyp/concl

    (defthm w-state-of-observability-fix-hyp/concl
      (b* (((mv ?conj ?new-copy
                ?new-strash ?new-aignet2 ?new-state)
            (observability-fix-hyp/concl
                 hyp concl aignet
                 copy gatesimp strash aignet2 state)))
        (equal (w new-state) (w state))))

    Theorem: observability-fix-hyp/concl-of-lit-fix-hyp

    (defthm observability-fix-hyp/concl-of-lit-fix-hyp
     (equal
      (observability-fix-hyp/concl (lit-fix hyp)
                                   concl aignet
                                   copy gatesimp strash aignet2 state)
      (observability-fix-hyp/concl hyp concl aignet
                                   copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyp/concl-lit-equiv-congruence-on-hyp

    (defthm observability-fix-hyp/concl-lit-equiv-congruence-on-hyp
     (implies
      (lit-equiv hyp hyp-equiv)
      (equal
        (observability-fix-hyp/concl hyp concl aignet
                                     copy gatesimp strash aignet2 state)
        (observability-fix-hyp/concl
             hyp-equiv concl aignet
             copy gatesimp strash aignet2 state)))
     :rule-classes :congruence)

    Theorem: observability-fix-hyp/concl-of-lit-fix-concl

    (defthm observability-fix-hyp/concl-of-lit-fix-concl
     (equal
      (observability-fix-hyp/concl hyp (lit-fix concl)
                                   aignet
                                   copy gatesimp strash aignet2 state)
      (observability-fix-hyp/concl hyp concl aignet
                                   copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyp/concl-lit-equiv-congruence-on-concl

    (defthm observability-fix-hyp/concl-lit-equiv-congruence-on-concl
     (implies
      (lit-equiv concl concl-equiv)
      (equal
        (observability-fix-hyp/concl hyp concl aignet
                                     copy gatesimp strash aignet2 state)
        (observability-fix-hyp/concl
             hyp concl-equiv aignet
             copy gatesimp strash aignet2 state)))
     :rule-classes :congruence)

    Theorem: observability-fix-hyp/concl-of-node-list-fix-aignet

    (defthm observability-fix-hyp/concl-of-node-list-fix-aignet
     (equal
      (observability-fix-hyp/concl hyp concl (node-list-fix aignet)
                                   copy gatesimp strash aignet2 state)
      (observability-fix-hyp/concl hyp concl aignet
                                   copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyp/concl-node-list-equiv-congruence-on-aignet

    (defthm
       observability-fix-hyp/concl-node-list-equiv-congruence-on-aignet
     (implies
      (node-list-equiv aignet aignet-equiv)
      (equal
        (observability-fix-hyp/concl hyp concl aignet
                                     copy gatesimp strash aignet2 state)
        (observability-fix-hyp/concl
             hyp concl aignet-equiv
             copy gatesimp strash aignet2 state)))
     :rule-classes :congruence)

    Theorem: observability-fix-hyp/concl-of-gatesimp-fix-gatesimp

    (defthm observability-fix-hyp/concl-of-gatesimp-fix-gatesimp
     (equal
      (observability-fix-hyp/concl hyp concl
                                   aignet copy (gatesimp-fix gatesimp)
                                   strash aignet2 state)
      (observability-fix-hyp/concl hyp concl aignet
                                   copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyp/concl-gatesimp-equiv-congruence-on-gatesimp

    (defthm
      observability-fix-hyp/concl-gatesimp-equiv-congruence-on-gatesimp
     (implies
      (gatesimp-equiv gatesimp gatesimp-equiv)
      (equal
        (observability-fix-hyp/concl hyp concl aignet
                                     copy gatesimp strash aignet2 state)
        (observability-fix-hyp/concl
             hyp concl aignet copy
             gatesimp-equiv strash aignet2 state)))
     :rule-classes :congruence)

    Theorem: observability-fix-hyp/concl-of-node-list-fix-aignet2

    (defthm observability-fix-hyp/concl-of-node-list-fix-aignet2
     (equal
      (observability-fix-hyp/concl
           hyp concl aignet copy
           gatesimp strash (node-list-fix aignet2)
           state)
      (observability-fix-hyp/concl hyp concl aignet
                                   copy gatesimp strash aignet2 state)))

    Theorem: observability-fix-hyp/concl-node-list-equiv-congruence-on-aignet2

    (defthm
      observability-fix-hyp/concl-node-list-equiv-congruence-on-aignet2
     (implies
      (node-list-equiv aignet2 aignet2-equiv)
      (equal
        (observability-fix-hyp/concl hyp concl aignet
                                     copy gatesimp strash aignet2 state)
        (observability-fix-hyp/concl
             hyp concl aignet copy
             gatesimp strash aignet2-equiv state)))
     :rule-classes :congruence)