Basic equivalence relation for ubdd-to-aignet-memo structures.
Function:
(defun ubdd-to-aignet-memo-equiv$inline (x acl2::y) (declare (xargs :guard (and (ubdd-to-aignet-memo-p x) (ubdd-to-aignet-memo-p acl2::y)))) (equal (ubdd-to-aignet-memo-fix x) (ubdd-to-aignet-memo-fix acl2::y)))
Theorem:
(defthm ubdd-to-aignet-memo-equiv-is-an-equivalence (and (booleanp (ubdd-to-aignet-memo-equiv x y)) (ubdd-to-aignet-memo-equiv x x) (implies (ubdd-to-aignet-memo-equiv x y) (ubdd-to-aignet-memo-equiv y x)) (implies (and (ubdd-to-aignet-memo-equiv x y) (ubdd-to-aignet-memo-equiv y z)) (ubdd-to-aignet-memo-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ubdd-to-aignet-memo-equiv-implies-equal-ubdd-to-aignet-memo-fix-1 (implies (ubdd-to-aignet-memo-equiv x x-equiv) (equal (ubdd-to-aignet-memo-fix x) (ubdd-to-aignet-memo-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ubdd-to-aignet-memo-fix-under-ubdd-to-aignet-memo-equiv (ubdd-to-aignet-memo-equiv (ubdd-to-aignet-memo-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ubdd-to-aignet-memo-fix-1-forward-to-ubdd-to-aignet-memo-equiv (implies (equal (ubdd-to-aignet-memo-fix x) acl2::y) (ubdd-to-aignet-memo-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ubdd-to-aignet-memo-fix-2-forward-to-ubdd-to-aignet-memo-equiv (implies (equal x (ubdd-to-aignet-memo-fix acl2::y)) (ubdd-to-aignet-memo-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ubdd-to-aignet-memo-equiv-of-ubdd-to-aignet-memo-fix-1-forward (implies (ubdd-to-aignet-memo-equiv (ubdd-to-aignet-memo-fix x) acl2::y) (ubdd-to-aignet-memo-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ubdd-to-aignet-memo-equiv-of-ubdd-to-aignet-memo-fix-2-forward (implies (ubdd-to-aignet-memo-equiv x (ubdd-to-aignet-memo-fix acl2::y)) (ubdd-to-aignet-memo-equiv x acl2::y)) :rule-classes :forward-chaining)