Add all the identifiers in a list to the disambiguation table, with object or function kind.
(dimb-add-idents-objfun idents table) → new-table
Function:
(defun dimb-add-idents-objfun (idents table) (declare (xargs :guard (and (ident-listp idents) (dimb-tablep table)))) (let ((__function__ 'dimb-add-idents-objfun)) (declare (ignorable __function__)) (cond ((endp idents) (dimb-table-fix table)) (t (dimb-add-idents-objfun (cdr idents) (dimb-add-ident-objfun (car idents) table))))))
Theorem:
(defthm dimb-tablep-of-dimb-add-idents-objfun (b* ((new-table (dimb-add-idents-objfun idents table))) (dimb-tablep new-table)) :rule-classes :rewrite)
Theorem:
(defthm dimb-add-idents-objfun-of-ident-list-fix-idents (equal (dimb-add-idents-objfun (ident-list-fix idents) table) (dimb-add-idents-objfun idents table)))
Theorem:
(defthm dimb-add-idents-objfun-ident-list-equiv-congruence-on-idents (implies (ident-list-equiv idents idents-equiv) (equal (dimb-add-idents-objfun idents table) (dimb-add-idents-objfun idents-equiv table))) :rule-classes :congruence)
Theorem:
(defthm dimb-add-idents-objfun-of-dimb-table-fix-table (equal (dimb-add-idents-objfun idents (dimb-table-fix table)) (dimb-add-idents-objfun idents table)))
Theorem:
(defthm dimb-add-idents-objfun-dimb-table-equiv-congruence-on-table (implies (dimb-table-equiv table table-equiv) (equal (dimb-add-idents-objfun idents table) (dimb-add-idents-objfun idents table-equiv))) :rule-classes :congruence)