Basic equivalence relation for atc-premise structures.
Function:
(defun atc-premise-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (atc-premisep acl2::x) (atc-premisep acl2::y)))) (equal (atc-premise-fix acl2::x) (atc-premise-fix acl2::y)))
Theorem:
(defthm atc-premise-equiv-is-an-equivalence (and (booleanp (atc-premise-equiv x y)) (atc-premise-equiv x x) (implies (atc-premise-equiv x y) (atc-premise-equiv y x)) (implies (and (atc-premise-equiv x y) (atc-premise-equiv y z)) (atc-premise-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm atc-premise-equiv-implies-equal-atc-premise-fix-1 (implies (atc-premise-equiv acl2::x x-equiv) (equal (atc-premise-fix acl2::x) (atc-premise-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm atc-premise-fix-under-atc-premise-equiv (atc-premise-equiv (atc-premise-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-atc-premise-fix-1-forward-to-atc-premise-equiv (implies (equal (atc-premise-fix acl2::x) acl2::y) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-atc-premise-fix-2-forward-to-atc-premise-equiv (implies (equal acl2::x (atc-premise-fix acl2::y)) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm atc-premise-equiv-of-atc-premise-fix-1-forward (implies (atc-premise-equiv (atc-premise-fix acl2::x) acl2::y) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm atc-premise-equiv-of-atc-premise-fix-2-forward (implies (atc-premise-equiv acl2::x (atc-premise-fix acl2::y)) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)