Fixing function for atc-premise structures.
(atc-premise-fix x) → new-x
Function:
(defun atc-premise-fix$inline (x) (declare (xargs :guard (atc-premisep x))) (let ((__function__ 'atc-premise-fix)) (declare (ignorable __function__)) (mbe :logic (case (atc-premise-kind x) (:compustate (b* ((var (symbol-fix (std::da-nth 0 (cdr x)))) (term (identity (std::da-nth 1 (cdr x))))) (cons :compustate (list var term)))) (:cvalue (b* ((var (symbol-fix (std::da-nth 0 (cdr x)))) (term (identity (std::da-nth 1 (cdr x))))) (cons :cvalue (list var term)))) (:cvalues (b* ((vars (symbol-list-fix (std::da-nth 0 (cdr x)))) (term (identity (std::da-nth 1 (cdr x))))) (cons :cvalues (list vars term)))) (:test (b* ((term (identity (std::da-nth 0 (cdr x))))) (cons :test (list term))))) :exec x)))
Theorem:
(defthm atc-premisep-of-atc-premise-fix (b* ((new-x (atc-premise-fix$inline x))) (atc-premisep new-x)) :rule-classes :rewrite)
Theorem:
(defthm atc-premise-fix-when-atc-premisep (implies (atc-premisep x) (equal (atc-premise-fix x) x)))
Function:
(defun atc-premise-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (atc-premisep acl2::x) (atc-premisep acl2::y)))) (equal (atc-premise-fix acl2::x) (atc-premise-fix acl2::y)))
Theorem:
(defthm atc-premise-equiv-is-an-equivalence (and (booleanp (atc-premise-equiv x y)) (atc-premise-equiv x x) (implies (atc-premise-equiv x y) (atc-premise-equiv y x)) (implies (and (atc-premise-equiv x y) (atc-premise-equiv y z)) (atc-premise-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm atc-premise-equiv-implies-equal-atc-premise-fix-1 (implies (atc-premise-equiv acl2::x x-equiv) (equal (atc-premise-fix acl2::x) (atc-premise-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm atc-premise-fix-under-atc-premise-equiv (atc-premise-equiv (atc-premise-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-atc-premise-fix-1-forward-to-atc-premise-equiv (implies (equal (atc-premise-fix acl2::x) acl2::y) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-atc-premise-fix-2-forward-to-atc-premise-equiv (implies (equal acl2::x (atc-premise-fix acl2::y)) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm atc-premise-equiv-of-atc-premise-fix-1-forward (implies (atc-premise-equiv (atc-premise-fix acl2::x) acl2::y) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm atc-premise-equiv-of-atc-premise-fix-2-forward (implies (atc-premise-equiv acl2::x (atc-premise-fix acl2::y)) (atc-premise-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm atc-premise-kind$inline-of-atc-premise-fix-x (equal (atc-premise-kind$inline (atc-premise-fix x)) (atc-premise-kind$inline x)))
Theorem:
(defthm atc-premise-kind$inline-atc-premise-equiv-congruence-on-x (implies (atc-premise-equiv x x-equiv) (equal (atc-premise-kind$inline x) (atc-premise-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-atc-premise-fix (consp (atc-premise-fix x)) :rule-classes :type-prescription)