Equality of a value of type
Function:
(defun eq-ushort-sllong (x y) (declare (xargs :guard (and (ushortp x) (sllongp y)))) (eq-sllong-sllong (sllong-from-ushort x) y))
Theorem:
(defthm sintp-of-eq-ushort-sllong (sintp (eq-ushort-sllong x y)))
Theorem:
(defthm eq-ushort-sllong-of-ushort-fix-x (equal (eq-ushort-sllong (ushort-fix x) y) (eq-ushort-sllong x y)))
Theorem:
(defthm eq-ushort-sllong-ushort-equiv-congruence-on-x (implies (ushort-equiv x x-equiv) (equal (eq-ushort-sllong x y) (eq-ushort-sllong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm eq-ushort-sllong-of-sllong-fix-y (equal (eq-ushort-sllong x (sllong-fix y)) (eq-ushort-sllong x y)))
Theorem:
(defthm eq-ushort-sllong-sllong-equiv-congruence-on-y (implies (sllong-equiv y y-equiv) (equal (eq-ushort-sllong x y) (eq-ushort-sllong x y-equiv))) :rule-classes :congruence)