Multiplication of a value of type
Function:
(defun mul-uint-slong (x y) (declare (xargs :guard (and (uintp x) (slongp y) (mul-uint-slong-okp x y)))) (mul-slong-slong (slong-from-uint x) y))
Theorem:
(defthm slongp-of-mul-uint-slong (slongp (mul-uint-slong x y)))
Theorem:
(defthm mul-uint-slong-of-uint-fix-x (equal (mul-uint-slong (uint-fix x) y) (mul-uint-slong x y)))
Theorem:
(defthm mul-uint-slong-uint-equiv-congruence-on-x (implies (uint-equiv x x-equiv) (equal (mul-uint-slong x y) (mul-uint-slong x-equiv y))) :rule-classes :congruence)
Theorem:
(defthm mul-uint-slong-of-slong-fix-y (equal (mul-uint-slong x (slong-fix y)) (mul-uint-slong x y)))
Theorem:
(defthm mul-uint-slong-slong-equiv-congruence-on-y (implies (slong-equiv y y-equiv) (equal (mul-uint-slong x y) (mul-uint-slong x y-equiv))) :rule-classes :congruence)