Access the |FGL|::|MAKE-ITES| field of a interp-flags bit structure.
(interp-flags->make-ites x) → make-ites
Function:
(defun interp-flags->make-ites (x) (declare (xargs :guard (interp-flags-p x))) (mbe :logic (let ((x (interp-flags-fix x))) (bit->bool (acl2::part-select x :low 2 :width 1))) :exec (bit->bool (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 3) (ash (the (unsigned-byte 5) x) -2)))))))
Theorem:
(defthm booleanp-of-interp-flags->make-ites (b* ((make-ites (interp-flags->make-ites x))) (booleanp make-ites)) :rule-classes :rewrite)
Theorem:
(defthm interp-flags->make-ites-of-interp-flags-fix-x (equal (interp-flags->make-ites (interp-flags-fix x)) (interp-flags->make-ites x)))
Theorem:
(defthm interp-flags->make-ites-interp-flags-equiv-congruence-on-x (implies (interp-flags-equiv x x-equiv) (equal (interp-flags->make-ites x) (interp-flags->make-ites x-equiv))) :rule-classes :congruence)
Theorem:
(defthm interp-flags->make-ites-of-interp-flags (equal (interp-flags->make-ites (interp-flags intro-bvars trace-rewrites make-ites branch-on-ifs hide)) (bool-fix make-ites)))
Theorem:
(defthm interp-flags->make-ites-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x interp-flags-equiv-under-mask) (interp-flags-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 4) 0)) (equal (interp-flags->make-ites x) (interp-flags->make-ites y))))