(bfr-varname-p x) → *
Function:
(defun bfr-varname-p (x) (declare (xargs :guard t)) (let ((__function__ 'bfr-varname-p)) (declare (ignorable __function__)) (bfr-case :bdd (natp x) :aig (acl2::aig-var-p x))))
Function:
(defun bfr-varname-fix (x) (declare (xargs :guard (bfr-varname-p x))) (let ((__function__ 'bfr-varname-fix)) (declare (ignorable __function__)) (bfr-case :bdd (nfix x) :aig (aig-var-fix x))))
Theorem:
(defthm bfr-varname-p-of-bfr-varname-fix (b* ((new-x (bfr-varname-fix x))) (bfr-varname-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm bfr-varname-fix-when-bfr-varname-p (implies (bfr-varname-p x) (equal (bfr-varname-fix x) x)))
Function:
(defun bfr-varname-equiv$inline (x y) (declare (xargs :guard (and (bfr-varname-p x) (bfr-varname-p y)))) (equal (bfr-varname-fix x) (bfr-varname-fix y)))
Theorem:
(defthm bfr-varname-equiv-is-an-equivalence (and (booleanp (bfr-varname-equiv x y)) (bfr-varname-equiv x x) (implies (bfr-varname-equiv x y) (bfr-varname-equiv y x)) (implies (and (bfr-varname-equiv x y) (bfr-varname-equiv y z)) (bfr-varname-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm bfr-varname-equiv-implies-equal-bfr-varname-fix-1 (implies (bfr-varname-equiv x x-equiv) (equal (bfr-varname-fix x) (bfr-varname-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm bfr-varname-fix-under-bfr-varname-equiv (bfr-varname-equiv (bfr-varname-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm nfix-of-bfr-varname-fix (equal (nfix (bfr-varname-fix x)) (nfix x)))
Theorem:
(defthm bfr-varname-fix-of-nfix (equal (bfr-varname-fix (nfix x)) (nfix x)))
Theorem:
(defthm bfr-varname-p-when-natp (implies (natp x) (bfr-varname-p x)))