(svtv-entries->overrideconds x) → vars
Function:
(defun svtv-entries->overrideconds (x) (declare (xargs :guard (svtv-entrylist-p x))) (let ((__function__ 'svtv-entries->overrideconds)) (declare (ignorable __function__)) (if (atom x) nil (let ((xf (svtv-entry-fix (car x)))) (cond ((and (svtv-condoverride-p xf) (let ((xf (svtv-condoverride->test xf))) (and (symbolp xf) (not (svtv-dontcare-p xf)) (not (equal (symbol-name xf) "~")) (not (eq xf :ones))))) (cons (svtv-condoverride->test xf) (svtv-entries->overrideconds (cdr x)))) (t (svtv-entries->overrideconds (cdr x))))))))
Theorem:
(defthm symbol-listp-of-svtv-entries->overrideconds (b* ((vars (svtv-entries->overrideconds x))) (symbol-listp vars)) :rule-classes :rewrite)
Theorem:
(defthm svarlist-p-of-svtv-entries->overrideconds (svarlist-p (svtv-entries->overrideconds x)))
Theorem:
(defthm svtv-entries->overrideconds-of-svtv-entrylist-fix-x (equal (svtv-entries->overrideconds (svtv-entrylist-fix x)) (svtv-entries->overrideconds x)))
Theorem:
(defthm svtv-entries->overrideconds-svtv-entrylist-equiv-congruence-on-x (implies (svtv-entrylist-equiv x x-equiv) (equal (svtv-entries->overrideconds x) (svtv-entries->overrideconds x-equiv))) :rule-classes :congruence)