Access the |X86ISA|::|S| field of a call-gate-descriptorbits bit structure.
(call-gate-descriptorbits->s x) → s
Function:
(defun call-gate-descriptorbits->s$inline (x) (declare (xargs :guard (call-gate-descriptorbits-p x))) (mbe :logic (let ((x (call-gate-descriptorbits-fix x))) (part-select x :low 44 :width 1)) :exec (the (unsigned-byte 1) (logand (the (unsigned-byte 1) 1) (the (unsigned-byte 84) (ash (the (unsigned-byte 128) x) -44))))))
Theorem:
(defthm bitp-of-call-gate-descriptorbits->s (b* ((s (call-gate-descriptorbits->s$inline x))) (bitp s)) :rule-classes :rewrite)
Theorem:
(defthm call-gate-descriptorbits->s$inline-of-call-gate-descriptorbits-fix-x (equal (call-gate-descriptorbits->s$inline (call-gate-descriptorbits-fix x)) (call-gate-descriptorbits->s$inline x)))
Theorem:
(defthm call-gate-descriptorbits->s$inline-call-gate-descriptorbits-equiv-congruence-on-x (implies (call-gate-descriptorbits-equiv x x-equiv) (equal (call-gate-descriptorbits->s$inline x) (call-gate-descriptorbits->s$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm call-gate-descriptorbits->s-of-call-gate-descriptorbits (equal (call-gate-descriptorbits->s (call-gate-descriptorbits offset15-0 selector res1 type s dpl p offset31-16 offset63-32 res2 all-zeroes? res3)) (bfix s)))
Theorem:
(defthm call-gate-descriptorbits->s-of-write-with-mask (implies (and (fty::bitstruct-read-over-write-hyps x call-gate-descriptorbits-equiv-under-mask) (call-gate-descriptorbits-equiv-under-mask x y fty::mask) (equal (logand (lognot fty::mask) 17592186044416) 0)) (equal (call-gate-descriptorbits->s x) (call-gate-descriptorbits->s y))))