Update the |X86ISA|::|V-PRIME| field of a evex-byte3 bit structure.
(!evex-byte3->v-prime v-prime x) → new-x
Function:
(defun !evex-byte3->v-prime$inline (v-prime x) (declare (xargs :guard (and (bitp v-prime) (evex-byte3-p x)))) (mbe :logic (b* ((v-prime (mbe :logic (bfix v-prime) :exec v-prime)) (x (evex-byte3-fix x))) (part-install v-prime x :width 1 :low 3)) :exec (the (unsigned-byte 8) (logior (the (unsigned-byte 8) (logand (the (unsigned-byte 8) x) (the (signed-byte 5) -9))) (the (unsigned-byte 4) (ash (the (unsigned-byte 1) v-prime) 3))))))
Theorem:
(defthm evex-byte3-p-of-!evex-byte3->v-prime (b* ((new-x (!evex-byte3->v-prime$inline v-prime x))) (evex-byte3-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm !evex-byte3->v-prime$inline-of-bfix-v-prime (equal (!evex-byte3->v-prime$inline (bfix v-prime) x) (!evex-byte3->v-prime$inline v-prime x)))
Theorem:
(defthm !evex-byte3->v-prime$inline-bit-equiv-congruence-on-v-prime (implies (bit-equiv v-prime v-prime-equiv) (equal (!evex-byte3->v-prime$inline v-prime x) (!evex-byte3->v-prime$inline v-prime-equiv x))) :rule-classes :congruence)
Theorem:
(defthm !evex-byte3->v-prime$inline-of-evex-byte3-fix-x (equal (!evex-byte3->v-prime$inline v-prime (evex-byte3-fix x)) (!evex-byte3->v-prime$inline v-prime x)))
Theorem:
(defthm !evex-byte3->v-prime$inline-evex-byte3-equiv-congruence-on-x (implies (evex-byte3-equiv x x-equiv) (equal (!evex-byte3->v-prime$inline v-prime x) (!evex-byte3->v-prime$inline v-prime x-equiv))) :rule-classes :congruence)
Theorem:
(defthm !evex-byte3->v-prime-is-evex-byte3 (equal (!evex-byte3->v-prime v-prime x) (change-evex-byte3 x :v-prime v-prime)))
Theorem:
(defthm evex-byte3->v-prime-of-!evex-byte3->v-prime (b* ((?new-x (!evex-byte3->v-prime$inline v-prime x))) (equal (evex-byte3->v-prime new-x) (bfix v-prime))))
Theorem:
(defthm !evex-byte3->v-prime-equiv-under-mask (b* ((?new-x (!evex-byte3->v-prime$inline v-prime x))) (evex-byte3-equiv-under-mask new-x x -9)))