Function Approximation |   |   | Partial Observability |   |   | Learning Methods |   |   | Ensembles |   |   |
Stochastic Optimisation |   |   | General RL |   |   | General ML |   |   | Multiagent Learning |   |   |
Comparison/Integration |   |   | Bandits |   |   | Applications |   |   | Robot Soccer |   |   |
Humanoids |   |   | Parameter |   |   | MDP |   |   | Empirical |   |   |
Failure Warning |   |   | Representation |   |   | General AI |   |   | Neural Networks |   |   |
All |   |   |
Stochastic search using the natural gradient
Yi Sun, Daan Wierstra, Tom Schaul, and Jürgen Schmidhuber, 2009
Details
Pattern Recognition and Machine Learning
Christopher M. Bishop, 2006
Details
Data Mining: Practical machine learning tools and techniques
Ian H. Witten and Eibe Frank, 2005
Details
Discriminative, Generative and Imitative learning
Tony Jebara, 2002
Details
On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes
Andrew Y. Ng and Michael I. Jordan, 2001
Details
Neural Networks: A Comprehensive Foundation
Simon Haykin, 1998
Details
No free lunch theorems for optimization
David H. Wolpert and William G. Macready, 1997
Details
Evaluation and Selection of Biases in Machine Learning
Diana F. Gordon and Marie desJardins, 1995
Details
An Introduction to Computational Learning Theory
Michael J. Kearns and Umesh V. Vazirani, 1994
Details
Shift of Bias for Inductive Concept Learning
Paul E. Utgoff, 1986
Details
The Need for Biases in Learning Generalizations
Tom M. Mitchell, 1980
Details