Shivaram's Reading List


Function Approximation     Partial Observability     Learning Methods     Ensembles    
Stochastic Optimisation     General RL     General ML     Multiagent Learning    
Comparison/Integration     Bandits     Applications     Robot Soccer    
Humanoids     Parameter     MDP     Empirical    
Failure Warning     Representation     General AI     Neural Networks    
All    

General ML

Stochastic search using the natural gradient
Yi Sun, Daan Wierstra, Tom Schaul, and Jürgen Schmidhuber, 2009
Details   

Pattern Recognition and Machine Learning
Christopher M. Bishop, 2006
Details   

Data Mining: Practical machine learning tools and techniques
Ian H. Witten and Eibe Frank, 2005
Details   

Discriminative, Generative and Imitative learning
Tony Jebara, 2002
Details   

On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes
Andrew Y. Ng and Michael I. Jordan, 2001
Details   

Neural Networks: A Comprehensive Foundation
Simon Haykin, 1998
Details   

No free lunch theorems for optimization
David H. Wolpert and William G. Macready, 1997
Details   

Evaluation and Selection of Biases in Machine Learning
Diana F. Gordon and Marie desJardins, 1995
Details   

An Introduction to Computational Learning Theory
Michael J. Kearns and Umesh V. Vazirani, 1994
Details   

Shift of Bias for Inductive Concept Learning
Paul E. Utgoff, 1986
Details   

The Need for Biases in Learning Generalizations
Tom M. Mitchell, 1980
Details