Shivaram's Reading List


Function Approximation     Partial Observability     Learning Methods     Ensembles    
Stochastic Optimisation     General RL     General ML     Multiagent Learning    
Comparison/Integration     Bandits     Applications     Robot Soccer    
Humanoids     Parameter     MDP     Empirical    
Failure Warning     Representation     General AI     Neural Networks    
All    

Comparison/Integration

Learning Complementary Multiagent Behaviors: A Case Study
Shivaram Kalyanakrishnan and Peter Stone, 2010
Details   

Estimating Learning Rates in Evolution and TDL: Results on a Simple Grid-World Problem
Simon M. Lucas, 2010
Details   

Critical Factors in the Empirical Performance of Temporal Difference and Evolutionary Methods for Reinforcement Learning
Shimon Whiteson, Matthew E. Taylor, and Peter Stone, 2010
Details   

Reinforcement Learning Versus Model Predictive Control: A Comparison on a Power System Problem
Damien Ernst, Mevludin Glavic, Florin Capitanescu, and Louis Wehenkel, 2009
Details   

Neuroevolution strategies for episodic reinforcement learning
Verena Heidrich-Meisner and Christian Igel, 2009
Details   

An empirical analysis of value function-based and policy search reinforcement learning
Shivaram Kalyanakrishnan and Peter Stone, 2009
Details   

The Role of Value Systems in Decision Making
Peter Dayan, 2008
Details   

Decision Theory, Reinforcement Learning, and the Brain
Peter Dayan and Nathaniel D. Daw, 2008
Details   

Accelerated Neural Evolution through Cooperatively Coevolved Synapses
Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen, 2008
Details   

Similarities and differences between policy gradient methods and evolution strategies
Verena Heidrich-Meisner and Christian Igel, 2008
Details   

Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem
Verena Heidrich-Meisner and Christian Igel, 2008
Details   

Evolving Soccer Keepaway Players Through Task Decomposition
Shimon Whiteson, Nate Kohl, Risto Miikkulainen, and Peter Stone, 2005
Details   

On Actor-Critic Algorithms
Vijay R. Konda and John N. Tsitsiklis, 2003
Details   

Coordinated Reinforcement Learning
Carlos Guestrin, Michail G. Lagoudakis, and Ronald Parr, 2002
Details   

Gradient Descent for General Reinforcement Learning
Leemon Baird and Andrew Moore, 1999
Details   

Evolutionary Algorithms for Reinforcement Learning
David E. Moriarty, Alan C. Schultz, and John J. Grefenstette, 1999
Details   

A Comparison of Direct and Model-Based Reinforcement Learning
Christopher G. Atkeson and Juan Carlos Santamar\'ia, 1997
Details   

Self-Improving Reactive Agents Based on Reinforcement Learning, Planning and Teaching
Long-Ji Lin, 1992
Details