Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Subsection 2.3 Topics
Proposition Logic; Predicates; Quantifiers; Encode statements into predicates with quantifiers; Boolean formulas; the notion of Satisfiability.
Basic Proof Techniques–Direct Proof; Proof by Contradiction; Simple Examples; Refresher on summation notation.
Induction and Invariants–Basic proofs by induction; Proving simple invariants
Graph Theory–Graph Coloring and applications; Trees; Planarity; Proving simple graph properties using induction
Sets and Functions–Definitions, Relations; Injections, Surjections, and Bijections; Infinite sets; uncountability
Recurrences–Recurrence relations; Solving Linear recurrences
Big-O and Intro to Algorithms–Growth of common functions; Big-O and Big-Omega; Master Theorem