The archetypical matrix-matrix operation is matrix-matrix multiplication:
\begin{equation*}
C := \alpha A B + \beta C,
\end{equation*}
where \(C \text{,}\) \(A \text{,}\) and \(B \) are \(m \times
n \text{,}\) \(m \times k \text{,}\) and \(k \times n \text{,}\) respectively. We will ignore \(\beta \) since \(C \) can always be scaled by \(\beta \) first.
Notice that
\begin{equation*}
\begin{array}{rcl}
A B + C
\amp=\amp
A
\left( \begin{array}{c | c |c}
b_0 \amp \cdots \amp b_{n-1}
\end{array} \right)
+
\left( \begin{array}{c | c | c}
c_0 \amp \cdots \amp c_{n-1}
\end{array} \right) \\
\amp=\amp
\left( \begin{array}{c | c | c}
A b_0 + c_0 \amp \cdots \amp A b_{n-1} + c_{n-1}
\end{array} \right) .
\end{array}
\end{equation*}
Hence, this matrix-matrix multiplication requires \(n \) matrix-vector multiplications with a matrix of size \(m
\times n \) for a cost of \(2 n ( m k ) = 2 m n k \text{.}\)