Subsection C.1.5 Summary
ΒΆWe repeat the various tables regarding the cost of the various operations.
\begin{equation*}
\begin{array}{| l | l | c | l |}
\hline
\amp ~~\mbox{operation} \amp \mbox{cost (in flops)} \amp ~~~\mbox{comment}
\\ \hline
\mbox{dot} \amp \alpha := x^T y \amp 2 m \amp x, y \in \Rm,
\alpha \in \R \\ \hline
\mbox{axpy} \amp y := \alpha x + y \amp 2 m \amp x, y \in
\Rm, \alpha \in \R \\ \hline
\mbox{scal} \amp x := \alpha x \amp m \amp x \in \Rm,
\alpha \in \R \\ \hline
\mbox{invscal} \amp x := x / \alpha \amp m \amp x \in
\Rm, \alpha \in \R \\ \hline
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{| l | l | c | l |}
\hline
\amp ~~\mbox{operation} \amp \mbox{cost (in flops)} \amp ~~~\mbox{comment}
\\ \hline
\mbox{gemv} \amp y := \alpha A x + \beta y \amp 2 m n \amp A \in \Rmxn,
x \in \Rn, y \in \Rm, \alpha, \beta \in \R \\
\amp \amp \amp \mbox{general matrix-vector multiplication}
\\ \hline
\mbox{ger} \amp A := \alpha x y^T + A \amp 2 m n \amp A \in \Rmxn,
x \in \Rm, y \in \Rn, \alpha \in \R \\
\amp \amp \amp \mbox{rank-1 update} \\ \hline
\mbox{syr} \amp A := \alpha x x^T + A \amp m^2 \amp A \in \Rmxm,
x \in \Rm, \alpha \in \R \\
\amp \amp \amp A \mbox{ is symmetric} \\
\amp \amp \amp \mbox{symmetric rank-1 update} \\ \hline
\mbox{syr2} \amp A := \alpha ( x y^T+y x^T ) + A \amp 2m^2 \amp A \in \Rmxm,
x,y \in \Rm, \alpha \in \R \\
\amp \amp \amp A \mbox{ is symmetric} \\
\amp \amp \amp \mbox{symmetric rank-2 update} \\ \hline
\mbox{trsv} \amp x := A^{-1} x \amp m^2 \amp A \in \Rmxm,
x \in \Rm \\
\amp \amp \amp A \mbox{ is a triangular matrix} \\
\amp \amp \amp \mbox{triangular solve}
\\ \hline
\end{array}
\end{equation*}
\begin{equation*}
\begin{array}{| l | l | c | l |}
\hline
\amp ~~\mbox{operation} \amp \mbox{cost (in flops)} \amp ~~~\mbox{comment}
\\ \hline
\mbox{gemm} \amp C := \alpha A B + \beta C \amp 2 m n k \amp
C \in \Rmxn, A \in \Rmxk, B \in \Rkxn,
\alpha, \beta \in \R \\
\amp \amp \amp \mbox{general matrix-vector multiplication}
\\ \hline
\mbox{syrk} \amp C := \alpha A A^T + \beta C \amp m^2k \amp
C \in \Rmxm, A \in \Rmxk,
\alpha, \beta \in \R \\
\amp \amp \amp C \mbox{ is symmetric} \\
\amp \amp \amp \mbox{symmetric rank-k update} \\ \hline
\mbox{trsm} \amp B := \alpha A^{-1} B \amp m^2n \amp A \in \Rmxm,
B \in \Rmxn, \alpha \in \R \\
\amp \amp \amp A \mbox{ is a triangular matrix} \\
\amp \amp \amp \mbox{triangular solve with }\\
\amp \amp \amp \mbox{multiple right-hand sides}
\\ \hline
\end{array}
\end{equation*}