CS395T: Visual Recognition, Fall 2012



Course overview        Useful links        Syllabus        Detailed schedule          Blackboard


Meets
:
Fridays 1-4 pm in ACES 3.408

Instructor: Kristen Grauman 
Email: grauman@cs
Office: ACES 3.446 
Office hours: by appointment (send email)


TA: Austin Waters
Email: austin@cs
Office hours: by appointment (send email)

When emailing us, please put CS395 in the subject line.

Announcements:

See the schedule for weekly reading assignments. 

Project extended outlines due Wed Oct 31.  See handout for guidelines.


Course overview:


Topics: This is a graduate seminar course in computer vision.   We will survey and discuss current vision papers relating to object and activity recognition, auto-annotation of images, and scene understanding.  The goals of the course will be to understand current approaches to some important problems, to actively analyze their strengths and weaknesses, and to identify interesting open questions and possible directions for future research.

See the syllabus for an outline of the main topics we'll be covering.

Requirements: Students will be responsible for writing paper reviews each week, participating in discussions, completing two programming assignments, presenting once or twice in class (depending on enrollment), and completing a project (done in pairs). 

Note that presentations are due one week before the slot your presentation is scheduled.  This means you will need to read the papers, prepare experiments, create slides, etc. more than one week before the date you are signed up for.  The idea is to meet and discuss ahead of time, so that we can iterate as needed the week leading up to your presentation. 

More details on the requirements and grading breakdown are here.

Prereqs:  Courses in computer vision and/or machine learning (378/376 Computer Vision and/or 391 Machine Learning, or similar); ability to understand and analyze conference papers in this area; programming required for experiment presentations and projects. 

Please talk to me if you are unsure if the course is a good match for your background.  I generally recommend scanning through a few papers on the syllabus to gauge what kind of background is expected.  I don't assume you are already familiar with every single algorithm/tool/image feature a given paper mentions, but you should feel comfortable following the key ideas.



Syllabus overview:


A. Object recognition fundamentals
  1. Local features and matching for object instances
  2. Large-scale image/object search and mining
  3. Classification and detection for object categories
  4. Mid-level representations
B. Beyond modeling individual objects
  1. Context and scenes
  2. Dealing with many categories
  3. Describing objects with attributes
  4. Importance and saliency

C. Human-centered recognition

  1. Pictures of people
  2. Activity recognition
  3. Egocentric cameras
  4. Human-in-the-loop interactive systems

Important dates:


Schedule and papers:


Note:  * = required reading. 
Additional papers are provided for reference, and as a starting point for background reading for projects.
Paper presentations: Cover the starred papers.
Experiment presentations: Pick one from among the starred papers.
Date
Topics
Papers and links
Presenters
Items due
Aug 31
Course intro 

[slides]
Topic preferences due via email to Austin (austin@cs) by Wed Sept 5 at 5 pm
A. Object recognition fundamentals
Sept 7
Local features and matching for object instances:

Invariant local features, instance recognition, visual vocabularies and bag-of-words

sift
  • *Object Recognition from Local Scale-Invariant Features, Lowe, ICCV 1999.  [pdf]  [code] [other implementations of SIFT] [IJCV]

  • *Selected pages from: Local Invariant Feature Detectors: A Survey, Tuytelaars and Mikolajczyk.  Foundations and Trends in Computer Graphics and Vision, 2008. [pdf]  [Oxford code] [Read pp. 178-188, 216-220, 254-255]

  • *Video Google: A Text Retrieval Approach to Object Matching in Videos, Sivic and Zisserman, ICCV 2003.  [pdf]  [demo]

  • For more background on feature extraction: Szeliski book: Sec 3.2 Linear filtering, 4.1 Points and patches, 4.2 Edges

  • Scalable Recognition with a Vocabulary Tree, D. Nister and H. Stewenius, CVPR 2006. [pdf]

  • SURF: Speeded Up Robust Features, Bay, Ess, Tuytelaars, and Van Gool, CVIU 2008.  [pdf] [code]

  • Robust Wide Baseline Stereo from Maximally Stable Extremal Regions, J. Matas, O. Chum, U. Martin, and T. Pajdla, BMVC 2002.  [pdf]

  • A Performance Evaluation of Local Descriptors. K. Mikolajczyk and C. Schmid.  CVPR 2003 [pdf]

[outline]
[filters]
[local features]
[matching and spatial verification]

Sept 14
Large-scale image/object search and mining:

Scalable retrieval algorithms, mining for visual themes, particularly for object instances

query expansion
  • *Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval.  O. Chum et al. CVPR 2007.  [pdf] [Oxford buildings dataset]

  • *Discovering Favorite Views of Popular Places with Iconoid Shift.  T. Weyand and B. Leibe.  ICCV 2011.  [pdf] [Paris 500K dataset]

  • *Supervised Hashing with Kernels.  W. Liu, J. Wang, R. Ji, Y. Jiang, S.-F. Chang.  CVPR 2012 [pdf]

  • Kernelized Locality Sensitive Hashing for Scalable Image Search, by B. Kulis and K. Grauman, ICCV 2009 [pdf]  [code] [80M Tiny Images data]

  • Image Webs: Computing and Exploiting Connectivity in Image Collections.  K. Heath, N. Gelfand, M. Ovsjanikov, M. Aanjaneya, and L. Guibas.  CVPR 2010.  [pdf]
  • World-scale Mining of Objects and Events from Community Photo Collections.  T. Quack, B. Leibe, and L. Van Gool.  CIVR 2008.  [pdf]

  • Total Recall II: Query Expansion Revisited.  O. Chum, A. Mikulik, M. Perdoch, and J. Matas.  CVPR 2011.  [pdf]

  • Geometric Min-Hashing: Finding a (Thick) Needle in a Haystack, O. Chum, M. Perdoch, and J. Matas.  CVPR 2009.  [pdf]

  • Three Things Everyone Should Know to Improve Object Retrieval.  R. Arandjelovic and A. Zisserman.  CVPR 2012.  [pdf]

  • Video Mining with Frequent Itemset Configurations.  T. Quack, V. Ferrari, and L. Van Gool.  CIVR 2006.  [pdf]

  • Bundling Features for Large Scale Partial-Duplicate Web Image Search.  Z. Wu, Q. Ke, M. Isard, and J. Sun.  CVPR 2009.  [pdf]

  • Improving Image-based Localization by Active Correspondence Search. T. Sattler, B. Leibe, L. Kobbelt.  ECCV 2012.  [pdf]

  • Learning Binary Projections for Large-Scale Image Search.  K. Grauman and R. Fergus.  Chapter to appear in Registration, Recognition, and Video Analysis, R. Cipolla, S. Battiato, and G. Farinella, Editors.  [pdf]

  • Learning Query-dependent Prefilters for Scalable Image Retrieval.  L. Torresani, M. Szummer, and A. Fitzgibbon.  CVPR 2009.  [pdf]

  • Detecting Objects in Large Image Collections and Videos by Efficient Subimage Retrieval, C. Lampert, ICCV 2009.  [pdf]  [code

  • Efficiently Searching for Similar Images.  K. Grauman.  Communications of the ACM, 2009.  [CACM link]

  • Fast Image Search for Learned Metrics, P. Jain, B. Kulis, and K. Grauman, CVPR 2008.  [pdf]

  • Small Codes and Large Image Databases for Recognition, A. Torralba, R. Fergus, and Y. Weiss, CVPR 2008.  [pdf]

  • Object Retrieval with Large Vocabularies and Fast Spatial Matching.  J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, CVPR 2007.  [pdf] [approx k-means code]

  • City-Scale Location Recognition, G. Schindler, M. Brown, and R. Szeliski, CVPR 2007.  [pdf]
[outline]
[wrap-up on instance recognition, large-scale search]

Sept 21
Classification and detection for object categories

Global appearance models for category and scene recognition; sliding window detection, voting-based detection, detection as a binary decision problem.

dpm
  • *A Discriminatively Trained, Multiscale, Deformable Part Model, by P. Felzenszwalb,  D.  McAllester and D. Ramanan.   CVPR 2008.  [pdf]  [code

  • *Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, Lazebnik, Schmid, and Ponce, CVPR 2006. [pdf]  [15 scenes dataset]  [libpmk] [Matlab]

  • *Class-specific Hough Forests for Object Detection.  J. Gall and V. Lempitsky.  CVPR 2009.  [pdf] [slides] [code]

  • Robust Object Detection with Interleaved Categorization and Segmentation.  B. Leibe, A. Leonardis, and B. Schiele.  IJCV 2008.  [pdf]  [code]

  • The Devil is in the Details: an Evaluation of Recent Feature Encoding Methods.  K. Chatfield, V. Lempitsky, A. Vedaldi, A. Zisserman.  BMVC 2011.  [pdf] [code

  • Rapid Object Detection Using a Boosted Cascade of Simple Features, Viola and Jones, CVPR 2001.  [pdf]  [code]

  • Histograms of Oriented Gradients for Human Detection, Dalal and Triggs, CVPR 2005.  [pdf]  [video] [code] [PASCAL datasets]

  • Modeling the Shape of the Scene: a Holistic Representation of the Spatial Envelope, Oliva and Torralba, IJCV 2001.  [pdf]  [Gist code

  • Locality-Constrained Linear Coding for Image Classification.  J. Wang, J. Yang, K. Yu,  and T. Huang  CVPR 2010. [pdf] [code]

  • Visual Categorization with Bags of Keypoints, C. Dance, J. Willamowski, L. Fan, C. Bray, and G. Csurka, ECCV International Workshop on Statistical Learning in Computer Vision, 2004.  [pdf]

  • Pedestrian Detection in Crowded Scenes, Leibe, Seemann, and Schiele, CVPR 2005.  [pdf]

  • Pyramids of Histograms of Oriented Gradients (pHOG), Bosch and Zisserman. [code]

  • Sampling Strategies for Bag-of-Features Image Classification.  E. Nowak, F. Jurie, and B. Triggs.  ECCV 2006. [pdf]

  • Beyond Sliding Windows: Object Localization by Efficient Subwindow Search.  C. Lampert, M. Blaschko, and T. Hofmann.  CVPR 2008.  [pdf]  [code]

  • Diagnosing Error in Object Detectors.  D. Hoiem et al. ECCV 2012.  [pdf]
[outline]
[slides part 1]
Heath-expt
Nona-paper

HW1 due Friday Sept 21, 11:59 pm
Sept 28
Mid-level representations

Segmentation into regions, grouping, surface estimation


surfaces


  • *Constrained Parametric Min-Cuts for Automatic Object Segmentation. J. Carreira and C. Sminchisescu. CVPR 2010.  [pdf] [code]

  • *From Contours to Regions: An Empirical Evaluation.  P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik.  CVPR 2009.  [pdf] [code and data] [journal paper]

  • *Indoor Segmentation and Support Inference from RGBD Images.  N. Silberman, D. Hoiem, P. Kohli, and R. Fergus.  ECCV 2012.  [pdf] [NYU depth dataset]
  • Geometric Context from a Single Image, D. Hoiem, A. Efros, and M. Hebert, ICCV 2005. [pdf]  [web]  [code]

  • Category Independent Object Proposals.  I. Endres and D. Hoiem.  ECCV 2010.  [pdf] [code/data]

  • Geometric reasoning for single image structure recovery.  D. Lee, M. Hebert, T. Kanade.  CVPR 2009.  [pdf]  [code]

  • Boundary-Preserving Dense Local Regions.  J. Kim and K. Grauman.  CVPR 2011.  [pdf]  [code]

  • Object Recognition as Ranking Holistic Figure-Ground Hypotheses. F. Li, J. Carreira, and C. Sminchisescu. CVPR 2010. [pdf]

  • People Watching: Human Actions as a Cue for Single View Geometry.  D. Fouhey et al. ECCV 2012.  [pdf]
  • Using Multiple Segmentations to Discover Objects and their Extent in Image Collections, B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman.  CVPR 2006.  [pdf] [code]

  • Combining Top-down and Bottom-up Segmentation. E. Borenstein, E. Sharon, and S. Ullman.  CVPR  workshop 2004.  [pdf]  [data]

  • Learning Mid-level Features for Recognition. Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. CVPR, 2010. 

  • Class-Specific, Top-Down Segmentation, E. Borenstein and S. Ullman, ECCV 2002.  [pdf]

  • GrabCut -Interactive Foreground Extraction using Iterated Graph Cuts, by C. Rother, V. Kolmogorov, A. Blake, SIGGRAPH 2004.  [pdf]  [project page]

  • Robust Higher Order Potentials for Enforcing Label Consistency, P. Kohli, L. Ladicky, and P. Torr. CVPR 2008.  

  • Collect-Cut: Segmentation with Top-Down Cues Discovered in Multi-Object Images.  Y. J. Lee and K. Grauman. CVPR 2010.  [pdf] [data]

  • Shape Sharing for Object Segmentation.  J. Kim and K. Grauman.  ECCV 2012.  [pdf]
  • Normalized Cuts and Image Segmentation, J. Shi and J. Malik.  PAMI 2000.  [pdf]  [code]

[outline]
[slides]
Che-Chun-expt
Elad-expt
Sanmit-paper
Islam-paper
Chao-paper


B. Beyond modeling individual objects
Oct 5
Context and scenes

Multi-object scenes, inter-object relationships, understanding scenes' spatial layout

context
  • *Scene Semantics from Long-term Observation of People.  V. Delaitre, D. Fouhey, I. Laptev, J. Sivic, A. Gupta, A. Efros.  ECCV 2012 [pdf] [web] [pose code]
  • *Multi-Class Segmentation with Relative Location Prior.  S. Gould, J. Rodgers, D. Cohen, G. Elidan and D.  Koller.  IJCV 2008. [pdf] [code]

  • *Using the Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization.  Torralba, Murphy, and Freeman.  CACM 2009.  [pdf] [related code]

  • Object-Graphs for Context-Aware Category Discovery.  Y. J. Lee and K. Grauman.  CVPR 2010.  [pdf] [code]

  • Estimating Spatial Layout of Rooms using Volumetric Reasoning about Objects and Surfaces.  D. Lee, A. Gupta, M. Hebert, and T. Kanade.  NIPS 2010.  [pdf] [code]

  • Contextual Priming for Object Detection, A. Torralba.  IJCV 2003.  [pdf] [web] [code]

  • Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification.  L-J. Li, H. Su, E. Xing, L. Fei-Fei.  NIPS 2010.  [pdf]  [code]

  • RGB-D scene labeling: features and algorithms. X. Ren, L. Bo, and D. Fox.  CVPR 2012. [pdf] [code]

  • TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation.  J. Shotton, J. Winn, C. Rother, A. Criminisi.  ECCV 2006.  [pdf] [web] [data] [code]

  • Recognition Using Visual Phrases.  M. Sadeghi and A. Farhadi.  CVPR 2011.  [pdf]

  • Thinking Inside the Box: Using Appearance Models and Context Based on Room Geometry.  V. Hedau, D. Hoiem, and D. Forsyth.  ECCV 2010 [pdf] [code and data]

  • Blocks World Revisited: Image Understanding Using Qualitative Geometry and Mechanics, A. Gupta, A. Efros, and M. Hebert.  ECCV 2010. [pdf]  [code]

  • Geometric Reasoning for Single Image Structure Recovery.  D. Lee, M. Hebert, and T. Kanade.  CVPR 2009.  [pdf]  [web[code]

  • Putting Objects in Perspective, by D. Hoiem, A. Efros, and M. Hebert, CVPR 2006.  [pdf] [web]

  • Discriminative Models for Multi-Class Object Layout, C. Desai, D. Ramanan, C. Fowlkes. ICCV 2009.  [pdf]  [slides]  [SVM struct code] [data]

  • Closing the Loop in Scene Interpretation.  D. Hoiem, A. Efros, and M. Hebert.  CVPR 2008.  [pdf]

  • Decomposing a Scene into Geometric and Semantically Consistent Regions, S. Gould, R. Fulton, and D. Koller, ICCV 2009.  [pdf]  [slides]

  • Learning Spatial Context: Using Stuff to Find Things, by G. Heitz and D. Koller, ECCV 2008.  [pdf] [code]

  • An Empirical Study of Context in Object Detection, S. Divvala, D. Hoiem, J. Hays, A. Efros, M. Hebert, CVPR 2009.  [pdf]  [web]

  • Object Categorization using Co-Occurrence, Location and Appearance, by C. Galleguillos, A. Rabinovich and S. Belongie, CVPR 2008.[ pdf]

  • Context Based Object Categorization: A Critical SurveyC. Galleguillos and S. Belongie.  [pdf]

  • What, Where and Who? Classifying Events by Scene and Object Recognition, L.-J. Li and L. Fei-Fei, ICCV 2007. [pdf]

  • Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects.  H. Kjellstrom et al. ECCV 2008.  [pdf]

  • Modeling mutual context of object and human pose in human-object interaction activities.   B. Yao and L. Fei-Fei.  CVPR 2010.  [pdf]

Jacob-paper
Aron-paper
Aashish-expt
David-expt
HW2 due, Friday Oct 5, 11:59 pm
Oct 12
Dealing with many categories

Sharing features between classes, transfer, taxonomy, learning from few examples, exploiting class relationships

shared features
  • *Sharing Visual Features for Multiclass and Multiview Object Detection, A. Torralba, K. Murphy, W. Freeman, PAMI 2007.  [pdf]  [code]

  • *Hedging Your Bets: Optimizing Accuracy-Specificity Trade-offs in Large Scale Visual Recognition.  J. Deng, J. Krause, A. Berg, L. Fei-Fei.  CVPR 2012 [pdf] [supp] [ILSVRC data]

  • *Tabula Rasa: Model Transfer for Object Category Detection. Y. Atar and A. Zisserman.  CVPR 2011. [pdf] [HoG code]

  • What Does Classifying More than 10,000 Image Categories Tell Us? J. Deng, A. Berg, K. Li and L. Fei-Fei.  ECCV 2010.  [pdf]

  • Discriminative Learning of Relaxed Hierarchy for Large-scale Visual Recognition.  T. Gao and Daphne Koller ICCV 2011.  [pdf] [code]

  • Comparative Object Similarity for Improved Recognition with Few or Zero Examples. G. Wang, D. Forsyth, and D. Hoeim. CVPR 2010. [pdf]

  • Learning and Using Taxonomies for Fast Visual Categorization, G. Griffin and P. Perona, CVPR 2008.  [pdf] [data]

  • 80 Million Tiny Images: A Large Dataset for Non-Parametric Object and Scene Recognition, by A. Torralba, R. Fergus, and W. Freeman.  PAMI 2008.  [pdf] [web]

  • Constructing Category Hierarchies for Visual Recognition, M. Marszalek and C. Schmid.  ECCV 2008.  [pdf]  [web] [Caltech256]

  • Learning Generative Visual Models from Few Training Examples: an Incremental Bayesian Approach Tested on 101 Object Categories. L. Fei-Fei, R. Fergus, and P. Perona. CVPR Workshop on Generative-Model Based Vision. 2004.  [pdf] [Caltech101]

  • Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts. S. Fidler and A. Leonardis.  CVPR 2007  [pdf]

  • Exploiting Object Hierarchy: Combining Models from Different Category Levels, A. Zweig and D. Weinshall, ICCV 2007 [pdf]

  • Incremental Learning of Object Detectors Using a Visual Shape Alphabet.  Opelt, Pinz, and Zisserman, CVPR 2006.  [pdf]

  • ImageNet: A Large-Scale Hierarchical Image Database, J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, CVPR 2009 [pdf]  [data]

  • Semantic Label Sharing for Learning with Many Categories.  R. Fergus et al.  ECCV 2010.  [pdf]

  • Learning a Tree of Metrics with Disjoint Visual Features.  S. J. Hwang, K. Grauman, F. Sha.  NIPS 2011. 

Elad-paper
Gary-expt


Wed Oct 17 project proposal abstract due
Oct 19 Describing objects with attributes

Visual properties, learning from natural language descriptions, intermediate representations

attributes
  • *Describing Objects by Their Attributes, A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, CVPR 2009.  [pdf]  [web] [data]

  • *FaceTracer: A Search Engine for Large Collections of Images with Faces.  N. Kumar, P. Belhumeur, and S. Nayar.  ECCV 2008.  [pdf] [code, data, demo]
  • *Relative Attributes.  D. Parikh and K. Grauman.  ICCV 2011.  [pdf]  [code/data]

  • Attribute and Simile Classifiers for Face Verification, N. Kumar, A. Berg, P. Belhumeur, S. Nayar.  ICCV 2009.  [pdf] [web] [lfw data] [pubfig data]

  • Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer, C. Lampert, H. Nickisch, and S. Harmeling, CVPR 2009  [pdf] [web] [data]

  • A Joint Learning Framework for Attribute Models and Object Descriptions.  D. Mahajan, S. Sellamanickam, V. Nair.  ICCV 2011.  [pdf]

  • WhittleSearch: Image Search with Relative Attribute Feedback.  A. Kovashka, D. Parikh, K. Grauman.  CVPR 2012.  [pdf] [data]
  • SUN Attribute Database: Discovering, Annotating, and Recognizing Scene Attributes.  G. Patterson and J. Hays.  CVPR 2012.  [pdf] [data]

  • Multi-Attribute Spaces: Calibration for Attribute Fusion and Similarity Search.  W. Scheirer, N. Kumar, P. Belhumeur, T. Boult.  CVPR 2012  [pdf]

  • A Discriminative Latent Model of Object Classes and Attributes.  Y. Wang and G. Mori.  ECCV, 2010.  [pdf]

  • Learning Visual Attributes, V. Ferrari and A. Zisserman, NIPS 2007.  [pdf] 

  • Learning Models for Object Recognition from Natural Language Descriptions, J. Wang, K. Markert, and M. Everingham, BMVC 2009.[pdf]

  • Attribute-Centric Recognition for Cross-Category Generalization.  A. Farhadi, I. Endres, D. Hoiem.  CVPR 2010.  [pdf]

  • Automatic Attribute Discovery and Characterization from Noisy Web Data.  T. Berg et al.  ECCV 2010.  [pdf]  [data]

  • Attributes-Based People Search in Surveillance Environments.  D. Vaquero, R. Feris, D. Tran, L. Brown, A. Hampapur, and M. Turk.  WACV 2009.  [pdf] [project page]

  • Image Region Entropy: A Measure of "Visualness" of Web Images Associated with One Concept.  K. Yanai and K. Barnard.  ACM MM 2005.  [pdf]

  • What Helps Where And Why? Semantic Relatedness for Knowledge Transfer. M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych and B. Schiele. CVPR 2010.  [pdf]

  • Recognizing Human Actions by Attributes.  J. Liu, B. Kuipers, S. Savarese, CVPR 2011.  [pdf]

  • Interactively Building a Discriminative Vocabulary of Nameable Attributes.  D. Parikh and K. Grauman.  CVPR 2011.  [pdf] [web]

Aashish-paper
Girish-paper
Sanmit-expt
Nona-expt



Oct 26
Importance and saliency

Among all items in the scene, which deserve attention (first)?  What makes images interesting or memorable?

saliency
  • *Understanding and Predicting Importance in Images.  A. Berg et al.  CVPR 2012.  [pdf] [UIUC sentence dataset] [ImageClef dataset]
  • *Learning to Detect a Salient Object.  T. Liu et al. CVPR 2007.  [pdf]  [results]  [data]  [code]

  • *What Makes an Image Memorable?  P. Isola, J. Xiao, A. Torralba, A. Oliva. CVPR 2011. [pdf] [web] [code/data]

  • What Do We Perceive in a Glance of a Real-World Scene?  L. Fei-Fei, A. Iyer, C. Koch, and P. Perona.  Journal of Vision, 2007.  [pdf]

  • A Model of Saliency-based Visual Attention for Rapid Scene Analysis.  L. Itti, C. Koch, and E. Niebur.  PAMI 1998  [pdf]

  • Interesting Objects are Visually Salient.  L. Elazary and L. Itti.  Journal of Vision, 8(3):1–15, 2008.  [pdf]

  • Accounting for the Relative Importance of Objects in Image Retrieval.  S. J. Hwang and K. Grauman.  BMVC 2010.  [pdf] [web] [data]

  • Some Objects are More Equal Than Others: Measuring and Predicting Importance, M. Spain and P. Perona.  ECCV 2008.  [pdf]

  • The Discriminant Center-Surround Hypothesis for Bottom-Up Saliency. D. Gao, V.Mahadevan, and N. Vasconcelos. NIPS, 2007.  [pdf]

  • What is an Object?  B. Alexe, T. Deselaers, and V. Ferrari.  CVPR 2010.  [pdf] [code]

  • A Principled Approach to Detecting Surprising Events in Video.  L. Itti and P. Baldi.  CVPR 2005  [pdf]

  • What Attributes Guide the Deployment of Visual Attention and How Do They Do It? J. Wolfe and T. Horowitz. Neuroscience, 5:495–501, 2004.  [pdf]

  • Visual Correlates of Fixation Selection: Effects of Scale and Time. B. Tatler, R. Baddeley, and I. Gilchrist. Vision Research, 45:643, 2005.  [pdf]

  • Objects Predict Fixations Better than Early Saliency.  W. Einhauser, M. Spain, and P. Perona. Journal of Vision, 8(14):1–26, 2008.  [pdf]

  • Reading Between the Lines: Object Localization Using Implicit Cues from Image Tags.  S. J. Hwang and K. Grauman.  CVPR 2010.  [pdf]

  • Peripheral-Foveal Vision for Real-time Object Recognition and Tracking in Video.  S. Gould, J. Arfvidsson, A. Kaehler, B. Sapp, M. Messner, G. Bradski, P. Baumstrack,S. Chung, A. Ng.  IJCAI 2007.  [pdf]

  • Determining Patch Saliency Using Low-Level Context, D. Parikh, L. Zitnick, and T. Chen. ECCV 2008.  [pdf]

  • Key-Segments for Video Object Segmentation.  Y. J. Lee, J. Kim, and K. Grauman.  ICCV 2011  [pdf]

  • Contextual Guidance of Eye Movements and Attention in Real-World Scenes: The Role of Global Features on Object Search.  A. Torralba, A. Oliva, M. Castelhano, J. Henderson.  [pdf] [web]

  • The Role of Top-down and Bottom-up Processes in Guiding Eye Movements during Visual Search, G. Zelinsky, W. Zhang, B. Yu, X. Chen, D. Samaras, NIPS 2005.  [pdf]

Islam-expt
Chao-expt
Che-Chun-paper
Niveda-paper
Wed Oct 31: project extended outlines due
C. Human-centered recognition
Nov 2
Pictures of people

Finding people, predicting their poses and attributes, automatic face tagging

poselets
  • *Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, L. Bourdev and J. Malik.  ICCV 2009  [pdf[code]

  • *Real-Time Human Pose Recognition in Parts from a Single Depth Image.  J. Shotton et al.  CVPR 2011. [pdf] [video] [web]

  • *Where’s Waldo: Matching People in Images of Crowds.  R. Garg, D. Ramanan, S. Seitz, N. Snavely. CVPR 2011.  [pdf] [web]

  • *Understanding Images of Groups of People, A. Gallagher and T. Chen, CVPR 2009.  [pdf]  [web] [data]

  • Parsing Clothing in Fashion Photographs.  K. Yamaguchi et al. CVPR 2012.  [pdf] [data]
  • Contextual Identity Recognition in Personal Photo Albums. D. Anguelov, K.-C. Lee, S. Burak, Gokturk, and B. Sumengen. CVPR 2007.  [pdf]

  • Recognizing Proxemics in Personal Photos.  Y. Yang, S. Baker, A. Kannan, D. Ramanan.  CVPR 2012.  [pdf]
  • Who are you? - Learning Person Specific Classifiers from Video, J. Sivic, M. Everingham, and A. Zisserman, CVPR 2009.  [pdf] [data] [KLT tracking code]

  • Describing Clothing by Semantic Attributes.  A. Gallagher et al.  ECCV 2012.  [pdf]

  • Describing People: A Poselet-Based Approach to Attribute Classification.  L. Bourdev, S. Maji, J. Malik.  ICCV 2011.  [pdf]

  • Weakly Supervised Learning of Interactions between Humans and Objects.  Prest et al. PAMI 2012. [pdf]
  • Finding and Tracking People From the Bottom Up.  D. Ramanan, D. A. Forsyth.  CVPR 2003.  [pdf]

  • Autotagging Facebook: Social Network Context Improves Photo Annotation, by  Z. Stone, T. Zickler, and T. Darrell.  CVPR Internet Vision Workshop 2008.   [pdf]

  • Efficient Propagation for Face Annotation in Family Albums. L. Zhang, Y. Hu, M. Li, and H. Zhang.  MM 2004.  [pdf]

  • Progressive Search Space Reduction for Human Pose Estimation.  Ferrari, V., Marin-Jimenez, M. and Zisserman, A.  CVPR 2008.  [pdf] [web] [code]

  • Names and Faces in the News, by T. Berg, A. Berg, J. Edwards, M. Maire, R. White, Y. Teh, E. Learned-Miller and D. Forsyth, CVPR 2004.  [pdf]  [web]

  • Face Discovery with Social Context.  Y. J. Lee and K. Grauman.  BMVC 2011.  [pdf]

  • “Hello! My name is... Buffy” – Automatic Naming of Characters in TV Video, by M. Everingham, J. Sivic and A. Zisserman, BMVC 2006.  [pdf]  [web]  [data]

  • Pictorial Structures Revisited: People Detection and Articulated Pose Estimation.  M. Andriluka et al. CVPR 2009.  [pdf]  [code]

  • Exploring Photobios.  I. Kemelmacher-Shlizerman, E. Shechtman, R. Garg, S. Seitz.  SIGGRAPH 2011.  [pdf]
Deepti-paper
Randall-expt
Aron-expt
Dinesh-paper

Nov 9
Activity recognition

Recognizing and localizing human actions in video or static images

actions
  • *Learning Realistic Human Actions from Movies.  I. Laptev, M. Marszałek, C. Schmid and B. Rozenfeld.  CVPR 2008.  [pdf]  [data] [code]

  • *A Unified Framework for Multi-Target Tracking and Collective Activity Recognition.  W. Choi and S. Savarese.  ECCV 2012.  [pdf] [web] [video] [data]

  • *Detecting Actions, Poses, and Objects with Relational Phraselets.  C. Desai and D. Ramanan.  ECCV 2012.  [pdf] [data] [code]

  • Beyond Actions: Discriminative Models for Contextual Group Activities.  T. Lian, Y. Wang, W. Yang, and G. Mori.  NIPS 2010.  [pdf] [data]

  • Efficient Activity Detection with Max-Subgraph Search.  C.-Y. Chen and K. Grauman. CVPR 2012.  [pdf] [project page]  [code]

  • Action Bank: a High-Level Representation of Activity in Video.  S. Sadanand and J. Corso.  CVPR 2012 [pdf]  [code/data]

  • A Hough Transform-Based Voting Framework for Action Recognition.  A. Yao, J. Gall, L. Van Gool.  CVPR 2010.  [pdf[code/data]

  • Actions in Context, M. Marszalek, I. Laptev, C. Schmid.  CVPR 2009.  [pdf] [web] [data]

  • Objects in Action: An Approach for Combining Action Understanding and Object Perception.   A. Gupta and L. Davis.  CVPR, 2007.  [pdf]  [data]

  • Exemplar-based Action Recognition in Video. G. Willems, J. Becker, T. Tuytelaars, and L. V. Gool. BMVC, 2009.
  • A Scalable Approach to Activity Recognition Based on Object Use. J. Wu, A. Osuntogun, T. Choudhury, M. Philipose, and J. Rehg.  ICCV 2007.  [pdf]

  • Recognizing Actions at a Distance.  A. Efros, G. Mori, J. Malik.  ICCV 2003.  [pdf] [web]

  • Action Recognition from a Distributed Representation of Pose and Appearance, S. Maji, L. Bourdev, J.  Malik, CVPR 2011.  [pdf]  [code]

  • Learning a Hierarchy of Discriminative Space-Time Neighborhood Features for Human Action Recognition.  A. Kovashka and K. Grauman.  CVPR 2010.  [pdf]

  • Temporal Causality for the Analysis of Visual Events.  K. Prabhakar, S. Oh, P. Wang, G. Abowd, and J. Rehg.  CVPR 2010.  [pdf] [Georgia Tech Computational Behavior Science project]

  • What's Going on?: Discovering Spatio-Temporal Dependencies in Dynamic Scenes.  D. Kuettel et al.  CVPR 2010.  [pdf]

  • Learning Actions From the Web.  N. Ikizler-Cinbis, R. Gokberk Cinbis, S. Sclaroff.  ICCV 2009.  [pdf]

Girish-expt
Gary-paper
David-paper


Nov 16
Egocentric cameras

Analyzing data from wearable, mobile cameras; "first person" vision

camera
  • *Social Interactions: A First-Person Perspective. A. Fathi, J. Hodgins, J. Rehg.  CVPR 2012  [pdf] [data]
  • *Recognizing Activities of Daily Living in First-Person Camera Views.  H. Pirsiavash and D. Ramanan.  CVPR 2012.  [pdf] [data/code]

  • *Novelty Detection from an Egocentric Perspective. O. Aghazadeh, J. Sullivan, and S. Carlsson. CVPR 2011 [pdf] [web/data]

  • Discovering Important People and Objects for Egocentric Video Summarization.  Y. J. Lee, J. Ghosh, and K. Grauman.  CVPR 2012.  [pdf]  [web]
  • Understanding Egocentric Activities.  A. Fathi, A. Farhadi, J. Rehg.  ICCV 2011. [pdf] [data]

  • Learning to Recognize Objects in Egocentric Activities.  A. Fathi, X. Ren, J. Rehg.  CVPR 2011.  [pdf]
  • Figure-Ground Segmentation Improves Handled Object Recognition in Egocentric Video.  X. Ren and C. Gu.  CVPR 2010 [pdf] [videos] [data]

  • Egocentric Recognition of Handled Objects: Benchmark and Analysis.  X. Ren and M. Philipose.  Egovision Workshop 2009.  [pdf] [data]

  • Activity Recognition from First Person Sensing.  E. Taralova, F. De la Torre, M. Hebert  CVPR 2009 Workshop on Egocentric Vision  [pdf]

  • Close-Range Human Detection for Head-Mounted Cameras.  D. Mitzel and B. Leibe.  BMVC 2012.  [pdf]

  • Structural Epitome: A Way to Summarize One’s Visual Experience. N. Jojic, A. Perina, and V. Murino. NIPS 2010.  [pdf]

  • Fast Unsupervised Ego-Action Learning for First-Person Sports Video. K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. CVPR 2011. [pdf]

  • Wearable Hand Activity Recognition for Event Summarization. W. Mayol and D. Murray. International Symposium on Wearable Computers. IEEE, 2005.  [pdf]

  • Illumination-free Gaze Estimation Method for First-Person Vision Wearable Device.  A. Tsukada, M. Shino, M. Devyver, T. Kanade.  ICCV Workshop 2011.  [pdf]

  • Egovision workshop at CVPR 2012
Jake-expt
Randall-paper
Dinesh-expt



Nov 30
Human-in-the-loop interactive systems

Human-in-the-loop learning, active annotation collection, crowdsourcing

bird



  • *Multiclass Recognition and Part Localization with Humans in the Loop.  C. Wah et al. ICCV 2011. [pdf] [Caltech/UCSD Visipedia project]  [data]

  • *What’s It Going to Cost You? : Predicting Effort vs. Informativeness for Multi-Label Image Annotations.  S. Vijayanarasimhan and K. Grauman.  CVPR 2009 [pdf] [data] [code]

  • *The Multidimensional Wisdom of Crowds.  Welinder P., Branson S., Belongie S., Perona, P. NIPS 2010. [pdf]  [code]

  • Visual Recognition with Humans in the Loop.  Branson S., Wah C., Babenko B., Schroff F., Welinder P., Perona P., Belongie S.  ECCV 2010. [pdf]  

  • Large-Scale Live Active Learning: Training Object Detectors with Crawled Data and Crowds.  S. Vijayanarasimhan and K. Grauman.  CVPR 2011.  [pdf]

  • WhittleSearch: Image Search with Relative Attribute Feedback.  A. Kovashka, D. Parikh, K. Grauman.  CVPR 2012.  [pdf] [data]

  • Crowdclustering.  R. Gomes, P. Welinder, A. Krause, P. Perona.  NIPS 2011.  [pdf]

  • Adaptively Learning the Crowd Kernel.  O. Tamuz, C. Liu, S. Belongie, O. Shamir, A. Kalai.  ICML 2011 [pdf]

  • LeafSnap: A Computer Vision System for Automatic Plant Species Identification.  N. Kumar et al.  ECCV 2012.  [pdf]

  • Interactive Object Detection.  A. Yao, J. Gall, C. Leistner, L. Van Gool. CVPR 2012.  [pdf]
  • Efficiently Scaling Up Video Annotation with Crowdsourced Marketplaces.  C. Vondrick, D. Ramanan, D. Patterson.  ECCV 2010.  [pdf] [data/code]

  • Video Annotation and Tracking with Active Learning.  C. Vondrick, D. Patterson, D. Ramanan.  NIPS 2011.  [pdf]  [code]

  • Active Frame Selection for Label Propagation in Videos.  S. Vijayanarasimhan and K. Grauman.  ECCV 2012.  [pdf]

  • Annotator Rationales for Visual Recognition.  J. Donahue and K. Grauman.  ICCV 2011. [pdf]

  • Attributes for Classifier Feedback.  A. Parkash and D. Parikh.  ECCV 2012.  [pdf]
  • Combining Self Training and Active Learning for Video Segmentation.  A. Fathi, M. Balcan, X. Ren, J. Rehg.  BMVC 2011.  [pdf]

  • Labeling Images with a Computer Game. L. von Ahn and L. Dabbish. CHI, 2004.

  • Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise.  J. Whitehill et al.  NIPS 2009.  [pdf]
  • Utility Data Annotation with Amazon Mechanical Turk. A. Sorokin and D. Forsyth. Wkshp on Internet Vision, 2008.

  • Far-Sighted Active Learning on a Budget for Image and Video Recognition.  S. Vijayanarasimhan, P. Jain, and K. Grauman.  CVPR 2010.  [pdf]  [code]

  • Active Learning from Crowds.  Y. Yan, R. Rosales, G. Fung, J. Dy.  ICML 2011.  [pdf]

  • Proactive Learning: Cost-Sensitive Active Learning with Multiple Imperfect Oracles.  P. Donmez and J. Carbonell.  CIKM 2008.  [pdf]
  • Inactive Learning?  Difficulties Employing Active Learning in Practice.  J. Attenberg and F. Provost.  SIGKDD 2011. [pdf]

  • Actively Selecting Annotations Among Objects and Attributes.  A. Kovashka, S. Vijayanarasimhan, and K. Grauman.  ICCV 2011  [pdf]

  • Supervised Learning from Multiple Experts: Whom to Trust When Everyone Lies a Bit.  V. Raykar et al.  ICML 2009.  [pdf]
  • Multi-class Active Learning for Image Classification.  A. J. Joshi, F. Porikli, and N. Papanikolopoulos.  CVPR 2009.  [pdf]

  • GrabCut -Interactive Foreground Extraction using Iterated Graph Cuts, by C. Rother, V. Kolmogorov, A. Blake, SIGGRAPH 2004.  [pdf]  [project page]

  • Peekaboom: A Game for Locating Objects in Images, by L. von Ahn, R. Liu and M. Blum, CHI 2006. [pdf]  [web]
Deepti-expt
Heath-paper
Niveda-expt

Dec 7
Final project presentations in class


Final papers due


Other useful links: